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ABSTRACT

Direct iterative methods for solving the linear system AU = Y

split A into a difference M-N. By viewing N as a weak multiplica-

tion operator, ,wddetermine the convergence rates of block direct

iterative methods for solving the system of equations that arises in

the finite element approximation of an elliptic boundary value

problem. V7ilustrate the theory with an analysis of second order

Dirichlet problems in the unit square, using Hermite cubic finite

element spaces. However, the method of analysis extends to gen-

eral elliptic boundary value problems of order 2m on bounded

domains in d- space dimensions, and to a broad class of finite ele-

ment spaces.
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Discrete approximations of linear elliptic partial differential equations lead

to a linear system of algebraic equations

AU=Y, (1.1)

in which the matrix A represents a discretization of the partial differential

operator and U is a discrete approximation of the true solution. Typically this is

a large, sparse algebraic system: on a mesh of size h in a d-dimensional region,

U has O(A - ) components, and A has only a few times that many nonzero ele-

ments. The development of computers made practical the solution of such sys-

tems. Hardware limitations and a desire to solve multidimensional problems,

together with the size and sparseness of the system, combined to stimulate the

development of direct iterative methods for solving (1.1). Elliptic difference

equations, which lead to big systems (1.1) partly because the standard finite

difference schemes have O(hs) accuracy, received special attention: see [8],

[22)]. [1], [12]. [20], and [13]. But the development of finite element methods -

particularly higher order accurate methods on irregular meshes -- and of direct

factorization methods suitable for finite element systems (1.1) (see e.g. [5]. [24].

[2]. [19], [4], (6]. [17], [9]), together with the discovery of fast factorization

methods for nice elliptic difference equations (see [15] for some references),

combined to lessen interest in iterative methods.

Nevertheless, iterative methods for finite element equations have received

some attention. Fix and Larsen [7] and Varga [21] studied the convergence of

the successive overrelaxation (S'OR) method, based on point and k-line block

splittings of the finite element matrix A, for self-adjoint elliptic problems of

order 2m. They showed for such problems that there are choices of the relaxa-

tion parameter w for which the spectral radius p, satisfies the inequality



-4-

Pu 1 - JUL'; when w - 1. which is the Gauss-Seidel method, the corresponding

inequality is pG, & 1 - Ah l. Each inequality is what one would expect for finite

difference approximations. But in neither instance could they determine the

constant K.

In [16] Rice experimentally compared direct factorization methods to point

SOR methods for Hermite cubic finite element approximations of some second

order elliptic problems. He concluded that point SOR and Jacobi conjugate gra-

dient iterative methods are more efficient than Gaussian elimination when the

approximation is sufficiently accurate. For the problems he considered,

"sufficient accuracy" is a surprisingly coarse 0.1%.

A direct (or cyclic) iterative scheme splits the matrix A into the difference

A = M - N, (1.2)

and generates a sequence UM according to

MU = NU(v-1) + Y. (1.3)

Convergence of the sequence is governed by the spectrai radius p of M-IN:

f 001 converges to the solution of (1.1) for any U(° ) iff p < 1. and smaller p

implies faster convergence. To determine the convergence rate of (1.3) there-

fore requires not only that we establish estimates like

p 1 - Xhz,

but also that we determine p and K.

In [13] one of us (Parter) developed a general approach for estimating the

rates of convergence of the classical iterative schemes - Jacobi, Gauss-Seidel,

and SOR - for self-adJoint elliptic finite difference problems. In [15] we



simplified the presentation and extended the method of analysis to parabolic

problems and to nonself-adjoint elliptic finite difference problems. The key to

the method is that the matrix N looks like a weak multiplication operator: there

is a function q for which (NU, V) 9 (q U. V). In this work we employ the same

basic approach to deal with finite element equations arising from elliptic prob-

lems, even problems that are not self-adjoint. However, the analysis of (1.3) for

finite element equations requires several new ideas.

The theory of [13] and [151 asks that the splitting (1.2) satisfy four basic

properties. To verify the third (A.3 in this paper, A.4 in [15]), which asserts that

N behaves properly, can be a little complicated, even in the finite difference

case. For the finite element case it appears to be very difficult. Part of the

difficulty stems from the fact that finite element methods involve derivatives as

well as function values. For example, in a second order elliptic problem the

finite element method based on tensor products of Hermite quintic splines will

involve several derivatives beyond the first. These derivatives appear in the ele-

ments of N. Nevertheless, the finite element method only yields H1 estimates -

that is. L2 estimates on the approximate solution and its first derivatives. In [3]

Boley and Parter studied a finite element approximation of a simple one-

dimensional problem. Their treatment of derivative terms cannot be extended

to multidimensional problems.

Sections 6 through 8 discuss the model problem that seeks u satisfying Dir-

ichlet boundary conditions and the equation

Lu : -[(au.). + (bu.), + (bu.), + (cu.).] + d ju + d2u + dou = (1.4)

in the unit square f, with do(z,y) ; 0. The finite element subspaces S, are ten-

sor products of Hermite cubic splines. We consider both k-line iterative

methods and the point Gauss-Seidel method. In these cases we find that one



need consider only the function values (as in the finite difference case) -- that is,

we can ignore certain derivative terms. Thus the necessary calculations are

similar to those carried out in our earlier work [15]. In particular, the spectral

radius pj (k) of the k-line block Jacobi iterative method is given by

p.,(rk) A 1 - "2-r."y (1.5)

asymptotically as Ay - 0. Here P0 is the minimal eigenvalue of the elliptic eigen-

value problem

LV=Xc(z,y)9o inO, ro=O oniO. (1.6)

Because this iterative scheme satisfies block property A, the corresponding

spectral radius p,(k) for the successive overrelaxation (SOR) k-line method with

relaxation parameter w is fixed by the equation

(p. + W - 1)' = cj'p03p.,

Thus the Jacobi spectral radius determines the smallest SOR spectral radius pl,

its corresponding wb, and the Gauss-Seidel spectral radius pus:

(1.7)

CJ6 2G~b := , Pb := GCb --

(see [1]. (20, chapter 4], [23]). It is interesting to compare the estimate (1.5)

with our earlier estimates in [12], [13], and [15] for a (particular) finite

difference approximation. In that case we have
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pj 1 - (1.8)

uith the same rO!

While the detailed analysis leading to these results is carried out only for

the model problem, it is clear that these ideas apply under much more general

circumstances. For example, this analysis is easily extended to those cases

where the finite element subspaces are "nodal" fite element subspaces (see

[18] or [19]) and the block splitting is based ou a reasonable geometric choice of

blocks. The region 0 may be any smooth region in I, whlie the elliptic operator

may be any strongly elliptic operator of order 2m. In section 9 we comment

further on the generality of the analysis contained herein.

Sections 2 through 5 are concerned with the general approach and develop

the basic theory. In section 2 we describe the general class of finite element

approximations to elliptic boundary value problems that can be written in a

weak form. We also describe the related algebra4c problems (1.1). In sectior 3

we recall the classical iterative methods. In section 4 we extend our earlier

thoretical work for finite difference approximations to the finite element setting.

The basic hypothesis is assumption A.3:

There are a constant go and a function q E C"(11) with

q (z ) o > 0 (z C 1),

and a function 7(t), defined for t at 1 and satisfying

a(t) -a 0 as t -ave

such that for every u and v in S, we have



h2- PN 0=fqu dx + c,1 (u,v),

where

I c,,(u,) I n(n)[Ijulll + I1v 112 + IIuIII + II11].

While this may appear to be an unusual condition, we believe that it is

satisfied by most natural splittings. The basis for this belief for finite differences

is described in [15, section 9]. For finite elements, our belief is grounded in that

discussion and the fact that we can ignore derivative terms to estimate q. As we

shall see later, the exact form of the bounds on the error term cn(u,v) can be

exploited to give some interesting results.

In section 5 a new convergence theorem is proven. Loosely speaking, if (i)

the subspaces S, satisfy certain inverse inequalities, (ii) there is a particular

bound on c., and (iii) there is an eigenpair (X, V) associated with the spectral

radius p so that IAI = p and

Re ('D -UN 0, (1.9)

then for small h the method is convergent and we can estimate the asymptotic

form of p. While it is not at all obvious that one should expect (1.9) to hold in the

generality of the finite element equations and for nonself-adjoint problems,

nevertheless condition (1.9) is always true for block Jacobi schemes that have

block property A.

Finally, in Section 9 we discuss the significance of the results.

For the reader's convenience, we collect some notation in the rest of this

section.

Let 0 be a bou. ad dor,' in 11. If u and v are in L2(0). their inner
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product is

,.,)Q:= fn u(x)v (z) dz.

The corresponding norm is denoted by

Il 11o~n := ' u- .

Customarily we write (u ,v) and 1 u 1I0 when the set D is clear from the context.

Let u:)-R. We denote the partial derivative of u with respect to zt by

Dtu := az Conventionally, if at = (a,, a2 , ad) is a d-tuple of nonnegative

integers, then we set jaj := a+a2+.+ad, and by Dau we mean

D*1... D'd.

By Hm (Q) we mean the set of functions u that together with all their partial

derivatives up to order m are in L2(f). Symbolically, we have

H' (Q) =u E L2 (() D*u E L2(0) for 0 - 1 a 1!5 m[

Hm (0) is a Hilbert space with norm defined by

I1U112 := F, (D"uD'u).

It will be convenient to define the seminorms J- Ij on H"' (0) for 0 !s j m

by

1 ul: 1 (D"u,D%). (1.10)

Observe that I Io is the L 2 norm 11-I l, and i1u[I2 = 1( 1 .
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Throughout the text, C and K denote generic constants. Constants of more

than local importance are numbered.

We are indebted to Carl deBoor and Louis Nirenberg for useful discussions.
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2. The problem.

Let 0 be a smooth, bounded domain in R, and let L be the linear elliptic

operator of order 2m defined by

Lu := (-1)iaI ()DPu) (2.1)

We consider the boundary value problem

Lu =f in(, b u =0 on OQ (Os-j m-1), (2.2)

where the boundary operators bj are linear and independent. We assume that

the problem (2.2) is equivalent to the following "weak" formulation: there is a

subspace 'm of H' (0) and we seek u c .M~ such that

B (u,v) = F(v) for all v Em, (2.3)

where

B(uv) fn b(u v) d (2.4a)

with

b (uV) := . G(Z)DUDI-V. (2.4b)

and

F~v) f f(x~v(x)dx.(2.4c)

Note that this formulation of the problem is in effect a statement about the

nature of the boundary conditions of (2.2).
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We also assume that the form B(uv) is continuous and coercive on

That is, we assume there are positive constants K, and X0 such that for all u and

v in R" we have

IB(u,v) 1 ! KillUI'm 11 Jim (continuity).

(2.5)

Re B(u,u) : Ko0ju IJ (coercivity).

A simple computation shows for any i E .f that

Im B (u.u) _L_ I Re B (u,u) I.

This inequality is called the argle-bounded property of B. A finite element

approach to the numerical solution of this problem is given by a sequence IS.,

of finite-dimensional subspaces of 7"1, satisfying

dim(Sa) = n, (2.6)

and the solution u, E S. of the finite-dimensional discrete problem

B(u.v.) = F(v.) for allv. E SVn . (2.7)

With each Sn we associate a basis jrp =Z. and a positive constant h = h,. the

"mesh size"; we suppose that h. -, 0 as n -

The problem (2.7) is brought into computable form by setting

a Bj := B(ro,) (1 ! i, j !c n). (2.8)

Problem (2.7) now takes the form: find
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Jul

where the vector

ri,, := (ul, .. . ), ) (2.9b)

corresponding to the function u, satisfies

Thus, if A is the n xn matrix and is the n-vector

A (,..,). (2.1Oa)

1(F F (2.1Ob)

then (2.7) reduces to the problem of finding r that solves

AU F. (2.10c)

The matrix A is called the problem ra.trix. Another matrix of interest is

the mass matrix Q given by

f0.J := go dx. (2.11)

If Ui and P are the vectors associated with functions u and v in S, we have

.Q. . . i l (2.12)
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where

P= (Pi. " , ). (2.13)

The coercivity condition (2.5b) implies that

Re ( UA D) > & U0Q U. (2.14)

Because Q is a positive definite matrix, (2.14) implies that the system (2.10c)

has a unique solution UV.

We consider a direct iterative method for the computation of Un, and hence

of u,. We write

A = M - N, (2.15)

where M is nonsingular and, in some sense, it is easy to solve problems of the

form U D = G. Let a first guess D0) be chosen. Succeeding iterates are given by

M ()= N EKv-1) + (2.16)

It is well known that this procedure is convergent for any initial guess if and

only if the spectral radius

p := max IjA I X is an eigenvalue of M-INj

(2.1?)

= max I XI : det(XM -N) = 0j

of M-ZN satisfies p < 1.

Our problem is the following. Imagine a sequence ,S% of subspaces and the

corresponding matrix problems
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A. Fn. (2.18)

where we have now used subscripts n on the problem matrices A, and the

moment vectors P, to emphasize this sequence. Suppose the splittings

An = M,-N. of (2.15) are chosen in some regular fashion. We seek to determine

the asymptotic behavior of the corresponding spectral radius pn as 7.. -. .

i
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3. The classical iterative methods.

Suppose A is an nxn matrix. The block structure of a direct iterative

scheme for the problem

AX= Y (3.1)

is completely determined by a block partition of the n-vector X. Suppose every

vpctor X is decomposed into subvectors

X = (X,. X 2 . X

and each Xj is itself an ni-vector. This partition of X induces a block partition

A = [A4j] in which each Aj is an N.xnj matrix. The corresponding block Jacobi

iterative scheme is

A.,X, v= A, V-1) + (3.2)

ma-

In terms of (2.16), I is the block diagonal matrix M diag[A.t]. The

corresponding Gauss-Seidel scheme is

A,.X,€ = - + ,. (3.3)

while the SOR scheme with relaxation parameter w is

A,.,Xjcv) = -cAx".Cv)- A( 8A.oX € - + t + (1 - c)A., cv - ' ).  (3.4)

We will be interested in specific block structures that arise in a natural

geometric way.

son
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4. A general approach.

Our analysis of the iterative scheme (2 10) is an extension of the approach

taken in [13] and [15]. We make four basic a.ssuriptions.

A. 1 p < 1, so the iterative scheme is convergent.

A.2 p is an eigenvalue of M-IN: there is a mesh vector V 0 0 such that

pM = N V.

A.3 There are a constant q0 and a function q E CI(fl) with

q (Z)go0>0 (Z E 7),

and a function ?7(t), defned for t ; 1 and satisfying

(t)-. 0 as t-.

such that for every u and v in S,, we have

h2mn PN0= fqu7 d + e.(uv),

where

I,,(u.v)l " T ,(n [iju + II1ll1 + IIuII + II lt.].

A.4 Let q be the function of A.3. The eigenvalue problem that seeks X c C and

o E km to satisfy

B[v) = Xfqod for ally E" (4.1)
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has a minmal eigenvalue

Am = A0 + iT.

By mrni arlu we mean that for any eigenvalue X it is true that

0 < A'9 Re X, and that if ReX A then jXI A Am

Note that if Am is a minimal eigenvalue then so is Am; if T = 0, then

Am = A0 !z JXI for any eigenvalue X.

Observe also that the eigenvalue problem (4. 1) is equivalent to the problem

Lp= Xq infl, bj r=0 onO1 (0<jrm-1).

Condition A.4 actually asserts that there is at least one eigenvalue. In the

self-adjoint case, and in the case of a second order operator with Dirichlet boun-

dary conditions, A.4 is always valid and Am = 0. We surmise that A.4 is always

true, but we prefer to make the assumption explicit. Conditions A.1 and A.2 are

readily verified for self-adjoint problems for which the splitting (2.15) satisfies

block property A; see e.g. [1], [13]. For standard ftnmte difference approxima-

tions of general second order Dirichlet problems, A.1 and A.2 follow from the

Perron-Frobenius theory of positive matrices: see [20] and [15].

While one should write M,, Nf, p., and h, we will usually drop the subscript

nt when its use is not essential for the clarity of the discussion.

Let X 0 0 be an eigenvalue of the iterative scheme (2. 16), and let F,' 0 be

an associated eigenvector, so that

XM I'=N. (4.2)



Subtract AN from both sides and divide by A to see that

A*= L~N. (4.3)

Now set

SA- (4.4)

Then the eigenvalue problem (4.3) can be restated in the equivalent forms

A ! =j(h 2-N) Fr,
(4.5)

B (w,v) P'(h2 mN)F" for allv c .

A basic result about this eigenvalue problem is

LEM 4.1. Suppose A.3-A.4 hold.

(a) Let p, be a bounded sequence of eigenvalues of (4.5), so that there is a

constant C > 0 for which

II C.

Then the limit

IA. := liMn,.. P-n'

of every convergent subsequence jA,.I is an eigenvalue of (4.1).

(b) Let A bi an eigenvalue of (4.1), and fix 5 > 0. Then there is an n I so that for

each n - nI there is an eigenvalue y, of (4.5) satisfying IA - A,. 6.

Proof. This result is essentially contained in the general theory for the

4, , 4v
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spectral approximation of compact operators (see [!I]). However, for the sake

of completeness, and to indicate an approach that applies in more general situa-

tions (see [14]), we give the proof in the appendix; (a) is Lemma A.1 and (b) is

Theorem A.4.

THEOREM 4.2. Suppose A.3-A.. hold. Then

p = p, 1 - Ao h 2m + (h2m). (4.6)

Proof. Lemma 4. lb implies that there is a sequence of eigenvalues of prob-

lems (4.1), which we denote by A,. that converges to Am. Thus Re p.- Ao and

Re (I + A/hm) > 1,

whence

1

is a well defined eigenvalue of (4.2), 1I < , and

I (")I= 1 - AA~h,-+ o~h~)

Therefore the theorem follows from the defnition of p.

THioRmh 4.3. Suppose A.1-A.4 hold. Then

P = = A - + o (h ). (4.7)

Proof. Set

1(4.8)/ :=ph~m
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From A.1 and Theorem 4.2 we then see that

0 <IL!5 AO+ o( (4.9)

More important, A.2 implies that , is an eigenvalue of (4.5). From Lemma 4.1

and the definition of A we then have

Ao + o(i) = Re =!9 AO + o (1).

Therefore A -. AC as ni -, -, and (4.7) holds.

RziRK. Because jA is an eigenvalue of (4.5), Lemma 4.1 shows that Ao is

itself an eigenvalue. Hence A,., = AO is real when A.1-A.4 hold.

Theorem 4.2 and A.2 suggest the following condition.

B.2 There is a constant Co for which, for every n, there is an eigenvalue X1

that satisfies

JAJ=p. and I I gCo. (4.10)

In fact, this condition can replace both A. 1 and A.2.

THuohhl 4.4. Suppose B.2, A.3, and A.4 hold. Then the method is convergent

and

p = 1 -o,+ o(h').

Proof. Let A = a, + ib.. Then (4.10) implies

(- ) + b,2!6 h4- C02. (4.11)
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Set

(4.12)

Then IA, is an eigenvalue of (4.5). and using (4.10) we have IA,, i 2Cc for h,

sufficiently small. Hence by Lemma 4.1 there is an eigenvalue A, of (4.1) and a

subsequence in'l such that ,.- -, A1 as n' -,n. Let

A, = c + id. (4.13)

Convergence of the subsequence and (4.12) together imply that

1 - . A , , + o ( , )

Thus

A... = on. + On. = 1 - A, ,. ,M + o (h l)

(4.14)

S1 - (a,.c - b,.d)A,M - i(a,,.d + bn.c)WM + • (oh,!).

From (4.14) and the fact that

a,, = 1 + o(h,!.P). b.. = 0(hP,)

we deduce that

an. 1 .-och: . + a (h . ). I , . : 1 - 4c . + a (h ,.n ).

Therefore

p,, IX.I 1 - chs" + o(h.-).
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By definition ot A0, 0 <(Ao0  c =Re A,, and therefore Theorem 4.2 implies that

c =Ac. This proves the theorem.
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5. A convergence theorem.

In earlier work [12], [13]. and [15] for finite difference equations, an analo-

gue of Theorem 4.3 established the asymptotic behavior of p. In this section we

use Theorem 4.4 to obtain a new convergence theorem for finite element

methods and splittings (2.15) that satisfy reasonable conditions. A remarkable

feature of this proof is that we require no positivity, positive definiteness, or

self-adjointness of the matrices involved. Therefore the theorem is particularly

useful for nonself-adjoint problems and finite element discretizations. Moreover,

the theorem can be recast to provide new results for finite difference approxi-

mations.

THEORmm 5.1. Consider the splitting (2.15) and the iterative scheme (2.16).

Suppose A.3 holds and

r. (uu) I tg K2[h ,u,0I1Vul0 - h 1], (5.1)

Im (E°h2- N = Ih2- (N - N* ) ll K3h(iiuil + Ie,(u.u)I). (5.2)
2

We also assume that certain "inverse inequalities" are satisfied: there are con-

stants cj such that

CAI I l10 (j = 0. 1, 2, . ), (5.3)

where Ij u is the seminorm of u defined by (1.10). Finally, we assume there is

an elgenpair (X,u) for which

I N P It l l, = 1. kNU t v '0. (5.4)

'hen the iterative scheme (2.18) is convergent and
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p = AOhm + o (h2m). (5.5)

REWUCms. If the inverse inequalities (5.3) hold, then Landau's inequality

implies that there is a constant Eo such that

hmllull. !- U0o lllo. (5.6)

This inverse inequality is valid for many of the usual finite element spaces Sn:

see [6]. Condition (5.4) holds when the splitting (2.15) is a block Jacobi splitting

that satisfies block property A. This is so because block property A implies that

-X is an eigenvalue of the iterative method whenever X is: see [23. chapter 5].

The estimate (5.1) is a special form of the basic estimate of A.3. As we will see in

section 7, precisely this estimate is satisfied in our model problem. Further, the

derivation of this estimate and the arguments of [15, section 9) suggest that this

is just the form to be expected. The estimate (5.2) arises because the antisym-

metric part of N is usually related to the lower order terms of the elliptic opera-

tor L.

For the proof we need three lemmas.

LEIMA 5.2. Let 10 > 0 be a fixed (small) constant. Then there is a constant

C%,, depending on 60 and m, and a constant h(m), such that for every

u e HI (Q) and h ! h(m) we have

h2 VU12g 1o31IIJU2 + h2 m C.00 I u 12, (5.7a)

h 2 j1VuIIo !g 611 u. lie + h zmC ,oIlufl,. (5.7b)
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Proof. We first derive a special form of Landau's inequality: for every 15 > 0

there are constants DO(k) and R, depending only on i and k, such that for every

U £ HhI andh <h

IuIV9'3 J-Iuj + Dj(k)h2I uj2i- (5.8)

The proof of (5.8) follows by induction. The usual form of Landau's inequality

(see [10]) is: there are constants c and ao, depending only on Q, so that for

every positive a less than a 0

!g I .< C (a I I ,. 12 1 -L I 1). ( .)

Hence (5.8) is true fork = 1. Assume (5.8) holds fork = 1, 2. 3, ,j. Let

a, : c max J2, 2Dg(k) k :r j j ] (5.10Oa)

and set

a := aih2 . (5. 1Ob)

For some positive Rj it is true that a ! a 0 whenever h <hRj. Then (5.9) yields

Ju,+1:5c (aIi2 uI,+ 2 + -j1 1U1 alh s

Using the inductive assumption we have

I u l.1, !a c (alh21 .u j.e + 1 [ '3 IluIji + DG(j)h 21 it I!..J).
ahi h,

That is,
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I Us 1 c 2 jU I,2 2 + C 13 JIU + cD (j)
+!gcl + alh2j +2 0 al U1!

But cDg(j)/a 1: <1/2 and c/al <1/2 by (5. 10a), and so

I uIs I --. 2c aih 2 1lU 1+ 2 + n2 J')I2

Hence we have established (5.5) with D,(j + 1) =-a 1 . For m = 1 the inequality

(5.7) is trivially true. For m = 2, the inequality (5.7) follows from (5.8) with

k = 1. We proceed by induction. Suppose (5.7) is true for m = 1, 2, . k

Then for small positive i and for h <h, (v) we have

ht Uj < !.Ch IuI2+! 'Uf 0 . (5.11)

Let

2~: 2C;3(k) .31k) (.2

then (5.11) and (5.8) with 6 = 11 together yield

h 2 2: 21 U 12+ Cg(k)hk (.O,,h.2 2't. ;lU"o') + ;,.,-. o

=Cg(Ic)Dq,h 2(k+)IU 12+1 + -2-IJU112 + -j~j-

Setting Cj(k+1) := Ca(k)D,61(k) completes the proof of the lemma.

COROLLAY. Assume that (5.1), (5.2), and (5.3) hold. Then there is a constant

X4 so that for small h and any u C S, we have
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lia Dh;"N V-0 1!_K4h - .. (5.13)

Furthermore, for any nonzero u E S, set

aO= ao(u) =Icn(Uu ) (5.14a)

a=8 'o : mla 1 (5.14b)
8K2

Assume that ao  0 and set

2 CO 1
k(,,o):= -- (+. (5.14c)

Then for small enough A (5.3) impLies that

cmh2,'I 12 "= j,_ IIUil 11, ( c . ' 2

!5Ii!, . (5.15)

Thus if un E: Sn satisfies

I1u 11, . and I ,U , 1 .2 (5.18)

then

ac(u) - 0 as n 4 -. (5.17)

Proof. Estimate (5.13) follows from (5.1), (5.2), (5.3), and (5.7a). The lower

bound of (5.15) is a restatement of (5.3). From (5.1) and (5.14a) we have
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a~otI u112:r K2[,t I I Uj12 + (14 + -)h I u 12].

Using Lemma 5.2 we now deduce that

'6 0 -Lh!
aoli0luj < K2'(,5 + io + T+ c.(1 TMh2"l .

Our choice of 1 and 4o implies that

KZ(4 + o + -'L) !5 C/2

Thus 'uIl1 ! k(a 0)h 2m ,, whence (5.15) and (5.17) follow.

For the rest of this section we assume that (5.1), (5.2), and (5.3) hold.

Luat- 5.3. Let (X,u) be the eigenpair of (5.4). Then there is a constant K5

such that

IO'N DI L K5. (5.18)

Proof. From AM U = N U it follows that

X= U = DU D (5.19)

U*MUD UlAUD4+-UNU

Evidently I 'N DI s 0, because p 0 0. Furthermore, the denominator is not

zero because

Re (tUAU) Re B(u,u) > KoJI u 112 = K0 > 0

and u has been chosen so that Re (V°NM k 0. From (5. 9) It follows that
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p " = =
11+ .AU

Now (5.18) must hold. for otherwise

UrAU

which would violate Theorem 4.2.

Let (Au) be the eigenpair of (5.4). We write

where

:=If qUI 2 dZ (5.20b)

and tj and to are real.

LEMMA 5.4. There are constants h o, yl, and 72> 0 so that for 0 <h < ho we

have

72q : ' +- t1  Re (D~h2m N D) L-yq ! y 71q oilu 1. (5.21)

Proof. Using (5. 1) we obtain

C. (U,,)1!5 K2[. jUI12 + -h2 u 2I].

This inequality and (5.3), (5.4), and (5.7) together imply that there is a constant

k' for which

11 x
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ItjI j.(u ,u)l £ ,-uE-,luI1i + -- CI ul] =:k'llullI (J = 0 1). (5.22)

This establishes the upper bound of (5.21) with, say. y2 1 +k'/ g.

We now turn to the lower bound. If the lemma fails, then there is a subse-

quence In'l for which ( ,-.,) satisfies (5.4) and

o+ t (5.23)

It follows from (5.6) that aohrm-jalloa: I-llfl = 1. Hence t.m a! q-0/L, and

so the numerator of (5.23), which is equal to Re (Dn*.N..7.,), converges to 0.

Lemma 5.3 then shows that h;,b I to= im (D.N.,-.)U n- K5/2. This last ine-

quality reads

K5 to"(5.24)
2

We consider two cases. In the first, 0-. . But then (5.17) implies

that

. o11 ,.11 0,

which contradicts (5.23). In the second, there is some constant C so that

IIu,.-.I S C?4?. But now (5.24) and (5.13) yield

-Kg hp I to1 ! K4Ch '! ,

which Is impossible.

---
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Let us now compute

+ z " A CND (5.25)

Lot

UAU D =a:(1+ + ). a-Ko, (5.26a)

where Ja is bounded because B(ut) is angle bounded.

Then

x = h a (q + t) + oto (5.28b)
(q + t), t '

y = h2'a O( + t j) - to (5.28c)( + tl)2 + to2

Proof of the theovem. Using (5.2) and (5.22), we deduce that

Ito "LA.

Hence

x ' t h2'= .a - a(h . 0 (5.27)
(q + t,)9 + t 0

Convergence follows from these inequalities and the fact that

1 1'1+=a + / "
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Moreover, Theorem 4.2 implies that

1~*jX1
1 I~ at (XI ~y - A~h  o+ (h2-).

Therefore there is a constant C so that

1 & 1 +2z + z* +-%y2 -Chm.

Because x is positive and 2x + z2 + yl2m C2, we get

0 < x < Ch m/2. (5.28)

From (5.21), (5.26b), and (5.27) we see that (5.28) implies that there is a con-

stant C for which q + tj a C. Then (5.26c) shows that I 1 !5 Chem. Thus there

is a constant CO so that

I1-XI a  1 x 2 -y~z "

h4o n w T + h)r + y ( .

But this means that B.2 holds-, now Theorem 4.4 implies (5.5).
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6. The model problem: description.

The basic ideas are clearest in this simple, but relatively rich, setting. Let

Obe the open unit square

o:= (z, ) E R: o <z. Y < 1[

Consider the Dirichlet problem

Lu = f for all (zy) E 11, (6.1)

u =0 for all (xy) E 00.. (6.2)

Here L is the second order uniformly elliptic operator ith smooth coefficients

given by

Lu : -[(au..), + (bu)y + (bu-,). + (cuy),] + dji, + dou + dou (6.3)

where

a (Xy) ! ac > 0 (6.4a)

b6(zY) - a(xY)c (Xy) ! - "o < 0 (6.4b)

do(z~y) a! 0. (6.4c)

The inequalities (8.4) assert that L is a uniformly elliptic operator.

Set
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b(uv) au.,, + (bu,,; + buyS,) + cuL,7 1 + (d1u, + dzu, + dou)(J.(8.Sa)

and

B(u,v) :=f b (,) dz dy. (6.Sb)

As in section 2, we assume in addition to (6.4) that there is a constant K0 > 0

such that for all u C HOj (0) we have

Re B(u,u) > Koi 11 . (6.8)

Under these circumstances, the boundary value problem (6.1), (8.2) is

equivalent to the weak form that seeks u E Hi (0) for which

B(u,v) =ffaf(--.y)v(xy) xy =:F(v) for allvE HJ(Q). (6.7)

We now take up the finite element solution of this problem. Let P. 2 and

PV a 2 be integers, and set

P, A Y (6.8)

For any function G(z,y) defined on Owe write

Gj. G(iAxzjAy). (6.9)

The trute element space S,, is the space of tensor products of Hernite cubic

saptses based on this grid. Let

zt :=iAz (i = 0. ., . P +), (6.10a)

tmai ~
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yj :j Ay (j 0. 1. 2, Py+i). (. 1Ob)

For each pair (i.j), 0 !5 i ! P, 0 ,j s Py. define

ejj := J(xy) : z, x !r. xt+ ,, yj ! y , . (6.11)

Hence the corners of the rectangle etj are the points (xj) - the lower left

corner - (x,+,,), (:i+Iy+1), and :- as in P'gr- .

(iJ (zi+,Y )

Figure 1. The element e1.j.

The restriction of any function v E Sn to eij is a polynomial of degree three in

each variable z and y, given by

v(z,y) = V. ,zly for all (zxy) C ej.. (6.12)

Thus v is determined in et.j by the 16 parameters

'+I~jj4 R I( V )i+L.j+pI. I (6.13)

with I andp running over the set j0. 1.

Because we have been discussing the restriction of v to etj it muh t seem

that we should somehow indicate that we are talking about v. v,, v,. v,, com-

pjuted from ,ithin 6 .j. However, the basic constraint on our space S, is pre-

cisely that these values at the four noda2 points are continuous. Therefore.
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these four values can be associated with the geometric point (x,/j).

It is convenient to describe S, in terms of a local basis for the restriction to

ejj. On the interval 0 x :r. 1 define the functions

Vo(z) (1 -x) 2 (1 + 2x). To(x) :=x( -x) 2 ,

(6.14)

V1(z) . -(3 - az), Tj(x) := (z - 1)X 2 .

These cubic polynomials satisfy

V0(0) = I. V0(1) = V'0(0) = Tr(i) = 0,

T'0(o) = 1. Tc(1) To(o) T0 (1) : 0.

(6.15)

V1() = 1, 14(0) = MI(o) = F,(1) = 0.

Tr'1(1) = 1. T,(D) = T'(o) = T,(a) = 0.

Then the restriction of v to etj may be written as

xso~ A- Axt I"

IV (z )+

1,0Z0.1 [ 6Y ~-~.~-

(6.16)

+ AAY(a.~1JX+PTzAx )r- Y
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Once we have this representation for the restriction of v to e *1 we can com-

pute the "local mass matrix Q(,j)" and the "local problem matrix A(ij)." How-

ever, while we will compute some of these coefficients later, for our present pur-

poses it suffices to observe the following form of these matrices. Let

Y = (Vi. Az(V,),j, Ay(A,,., A x (V),.j) (6.17)

be the 4-vector of interpolation conditions at the point (zt,yj), and let

(1'=.J- I'+.ij. v, Ij.i- .tlj+,)e (8.18)

be the 16-vector of all the interpolation conditions for v(z,y) re-stricted to e.j.

Then, for u and v e S, with v represented by Vjj and u by U.j on ej,-, we have

ff U dzd xyVtjQ)V (6.19)

where Qois a constant 16x16 matrix independent-of Az, AV, or (Q,). Similarly,

ff, b(),., . i = (Az y)P'.j[(A)-c,, + (Ax)-,, + ac,,o , (6.20)

where ac, a,. and ag are 16x16 matrices that depend on (i,) and

"0 is independent of (Ax ,Ay) (6.21)

while

a, and a2 depend only on r A (6.22)
AT"

The matrix a2 corresponds to the portion of b (is ,v) given by
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and is a positive definite real symmetric matrix. The matrix a, corresponds to

the portion of b (u,v) given by

(du, + d2U3Y)U, (6.23b)

while the matrix a0 corresponds to the portion of b (u ,v) given by

d0 u (6.23c)

and is a real symmetric positive semi-defnite matrix.

From these local matrices one can easily construct the mass matrix Q and

the problem matrix A; see for instance [19].

Let V denote the vector of all unknowns associated with the l'th horizontal

line y = yj: using (8.17),

V, =(V, .. vJ,. , v,1.). (6.24)

Now let P denote the vector of all unknowns ordered by lines, i.e..

V= (VI,'V, . . V4). (6.25)

Then for any u and v E S. we have

uf o dr d AzDy V' U, (6.26)

where Q is a (4P.Pv)x(4PP.) constant matrix that is independent of Az and Ay.

Further, the finite element approximation (2. 10c) corresponding to (2.7) with

this choice of S, and these interpolation conditions becomes
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AU = F, (8.27)

where

A = zy[(Ax)- 2 A2 + (A)-'A, + Ao] (8.28)

and Ao, A,, and A2 have the same qualitative features as ao. a,, and a2. For

example, A2 corresponds to the portion of b (u v) given by (6.23a) and is a real

symmetric positive definite matrix that depends on Az and Ay only through the

ratio r = AY/Ax

The matrices Q and A may be regarded as (P.P,)x(PPy) block matrices,

where each block is itself a 4x4 matrix. This is the "geometric point" represen-

tation of Q and A. In this representation both Q and A correspond to nine-point

schemes. That is, the (ij) block equations are

(A ,jj = Ajj.tjUj + A.j:t+,.jpUt+ij+p = Fj. (8.29)
Lt.-.O.1

(Q ).j = Q.j;t.U ij + Q U (6.30)

We also consider the k-line representation of this problem. Let k 1 be a

fixed integer. We assume that k divides P., i.e.,

Py = kPL. (6.31)

where Ph is of course an integer. Let u C S, and let 0 be the associated vector

of interpolation conditions. Let U (k) be the ,ctor associated with the s'th set

of k horizontal lines: -
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U.(k) = UC,.)' (6.32)

In this representation. the problem matrix A and the mass matrix Q become

block tridiagonal matrices. That is. the equation (2 16) takes the form

A,.,_ (kc) U,_ (k) + A6,.(k)U.(k) + A.. + (k)U,,()

(6.33)

The matrices A.,+, ( k) are (4kP)x(4kP.) matrices.

Let us consider the block Jacobi iterative scheme based on this k-line

representation of A. Given a first guess V(0) we have the iterative scheme

A., _~k) U._I') (k) + 4,, (k)Uc)(k) + ,...,(ck) U.;j') = F, (k). (6.34)

Thus, in the notation of section 2, we have (2.15) with

M := diag[A..(k)], N := [-4...-(k), 0, -A. 8 .(k)], (6.35)

where the notation in (6.35) means that N is a block tridiagonal matrix with the

three principal diagonals as written.



- 42 -

7. The model problem: estimates.

In this section and the next we turn to an analysis of block iterative

methods for this model problem - with a complete analysis of k-line block

methods. Our first goal is to simplify the study of the bilinear form

AzAy PN .

In particular, the estimates that follow enable us to ignore many of the elements

of N when determining a function q (z.y) that meets the conditions of A.3.

LEMu 7.1. Let 0 be the unit square and let 7T be the 16-dimensional space of

polynomials in (z,y) E D that are cubic in each variable separately. Hence. if

g c it, then

g~z y) = p.zY. (7.1)
r ,s |s0

There is a constant C0 > 0 such that

1 Ig (,A)1 "!6 ColIg 110. (7.2a)
4 (q.j

jg - g (o,) llo 5 Coll Vg 110' = Col I 12  (7.2b)

Ea Ig (oa.-) - g 12 : Coll Vg 11. (7.2c)

(e.,v ).(e'(7.2d
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where (a.A) and (u', ') are any of the four corner points (0,0), (1,0). (1.1), (0,1).

Proof. Because 7r is a finite-dimensional space, any seminorm " is dom-

inated by any norm 11: there is a constant C so that I g 1 CIig for every

g E i. This establishes (7.2a). Fix a corner point (aI.). Consider the norm

defined on 7i by

IIIg!II ) I g(a.A)I' + IIVg,,. (7.3)

Because if is a finite-dimensional space, there is a constant C > 0 such that

I1 11o ! CIIlIIi for ll . (7.4)

Set

'(zy) := g C=,y) - g (a,A). (7.5)

Then (7.2b) follows from (7.4) with C in place of CG.

Let (0',/') be another corner point, and set

(9. )= (a,10 I

Then S(,,.#.) is a seminorm and, as before,

Seo.,) (F)! C j III .A) for all ff. (7.6)

Let g" be given by (7.5). Then (7.6) yields

(g (a',.') - g (a,s) I ! C1I1Vg I11.

Summing this inequality over all pairs (,/), (A.s), we obtain (7.2e) with C0
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replaced by 16C.

Let S be the seminorm defined by

s 2(g):= (' (
lla- ,'j'uO

The argument given above now yields (7.2d). Let CO be the largest of the con-

stants and the lemma is proven.

For convenience, we collect some definitions here. Throughout this section

and the next, we set

h

For each e~j and for every u and v in Sn, let

, (u .U ,1L .. j) = h(ll~ilo..,jiI W lo~o. IIIo.,fi VuI 1,,f + h 211 VU IIO;elV.,V I o:.,.

Finally, for every u and v in S, we set

j(u.v,h) := h(iiuIOIIVvIlo + IIvIIlVuilo) + h21jViIIiI1VvIIo.

Note that

LAA 7.2. Fix (iQ) and let v e S,. Let P and P denote one of the corner

points (xt.y), (zi 1 ,y). ( +,1 j. 1 ), (ztyj 1 ) of et.j. Then there is a constant C,

depending on r and 1/r such that

ht; IV (P)I' & C1ll 11loe,. (7.7a)



h2 Ax2 'Ay"01' I (D% )(P) 12 Ch211 VV jj" (7-8)
lalul P

Proof. Set

y - Y

Let v. be any function in Sn and set

The function g ((oi7) is an element of ir. Moreover, a direct computation shows

that

ff.tj vi2 dxdyc~,= - 3ff 0 ig~d~d77rffnjg~ildd7,

ff't lI zi VV 12dX-ffa I gq12 d tdi7 -$ffn I j1 td7

Let

F=max (r, 1/r).

Then
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lV 111. ; II Vg 1 Il 11 IIV.V, . (7.10)

Another computation shows that

fftj IV(.)la =hfn Ig ((,77)12 dC d?. (7.11)

Therefore the inequality (7.2b) of Lemma 7.1 yields

I1I - V (p) IIj;.,t " Cofh21 VV II ,j

which proves (7.7b). Inequality (7.7a) follows from a similar change of variables

and (7.2a).

If we define

Dxa a D* 81a) (7.12a)

then we see that

A'Ay*"D, (z ,y) = Djg (C.7). (7.12b)

Thus (7.2d) of Lemma 7.1 yields (7.8) with C, = Co. Finally, (7.2c) of Lemma 7.1

yields (7.9).

CoRaoLmr 7.3. There is a constant Cg independent of (ij) such that

4 + v? ' + vj 4." vtJ.) = lltllII., + 17(VAX) (7.13)

where

I,( ) .C ,,h, j).(7.14)
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Proof. For each index (i+l,j+p) we apply (7.7b) to obtain

IIu - i+, j+pllo.,.. - h vrTj lV ,.,#.

Hence the triangle inequality yields

I (11v 11o;.,', - h I vi+,,j+,, 1)1 !5 hv'C-C Ilw 11o;.,.,

and

h vi+,j+p I ! I1vIo;.,, + h v'II Vv IIo;6,,. (7.15a)

Therefore

hIIvi+,j+,I I= IIIlo. + P(v,h),

where

We add the four equations for all (t +L ,j +p) and divide by 4 to obtain (7.13).

Thiomix 7.4. Let u and v r S,. Let j E Cl(D). Then there is a constant

K > 0 such that

h2 Iv,.j1':9 K<IIv 110' (7.16a)
=I1 Jul

ff sutU dc = h'1Spjuj + 6(u, ,p). (7.1Sb)

where
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Furthermore,

h2Z2 t IAIAy*(Duj I2-- 0,I~u&

(7.17)

h 2 E E l"'+P'Ay"1+At3(D u)j(DPv)i.j 1: K'q(u,v,h).
'j G1.+10 al

Proof. To get (7.16a), sum (7.7a) over all elements eij. The estimates

(7.16b) and (7.16c) follow from (7.13) and (7.14) of Corollary 7.3 applied to

(u ± v). together with simple estimates on

ff. rpu dx dyt - q~jf uV d dy.

The first estimate of (7.17) comes from (7.8) of Lemma 7.2.

In order to complete the proof of (7.17) we need only consider the case

a= 0. 1gI 1. We have

J := h2F I ujj(D~v)tj I Am"'hyps
tj

! (h2(%j))1'(h 2 E I(Dv)t,jAzIAyPI 2)1/2.

A direct computation from (7.7a) and (7.17a) gives

whence (7.17b) follows.
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We are now ready to apply these estimates to the study of

tizAyN = h 2 N

and the determination of the function q (zI/).

Tuonmm 7.5. For every vector V = (Vij). let 90 be the vector with

Ts.oJ7.. Forj

9 0 V % (7.18)

Suppose NO is a matrix such that for every u and v E S. we have

h2P *NO&O = h2' V 0 °N& + 13(u,,v ), (7.19a)

where

I ON -V ,AX) I !g C (u ,v ,h). (7.19b)

Then if N O satisfies A.3 so does N.

Proof. From the estimate (7.17b) we see that

h2 P 0'DO = h2 P'N 0+ o(6(uvh)).

Hence when verifying A.3 it suffices to consider PO, DO, and matrices N O that

satisfy (7.19).

This theorem shows that, to apply Theorem 5.1. we need consider only the

vectors PO and 00, and matrices NO satisfying (7.19). In particular, we may

ignore components that come from derivative terms.
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Suppose that the splitting (2.15) is a "natural" block splitting of the kind

described in Section 3. That is, a nonzero element of -N is exactly equal to the

same (same indices (ij)) nonzero element of A. Then it follows from Theorem

7.5 that for the purpose of leterrnining q znd verifying A.3, it suffices to con-

sider the same splitting of the matrix AO, which is a block matrix consisting of

4x4 blocks A .4 , where

ia.j;q.A' 0 0 0
Aij:j.c = A 0 00 (7.20)

0 000

and

a =j~~ + 17531 (7.21a)=, . =A 2 AY2 175-

+ c,-., E.j 156 (7.21b)a,-:+,j [AY9 155 z 75 '(

bi + 27 _ + c .j

Ay 775= - A2YAy 175 A (7.21c)

c4J 54 ctj 156 (72d=tj;t.Ji1 = -z 7 - r -7 J (7.21d)
Ax2 175 Ax;'151

r27 at. +1 1(72a
7 5- ,115 - ) + (722a)



.= i.~i:+1.j. (7.22b)

= . (7.22c)

ai.i = axj~j.i+j, (7.22d)

, --" ajv, lp. (7.22e)

REmaKs. As (7.21) and (7.22) show, on each element ej we have approxi-

mated the variable coefficients a, b, and c by constant coefficients e;j, btj, cjj,

respectively. One could "center" the coefficients aj, b.j, and ctj in these equa-

tions. However, for the purpose of determining q this increased accuracy is

irrelevant. Only the coefficients cz(z,y), b (z,y ), ard c (z,y) enter into the for-

mulae. This follows from the discussion in Section 8 describing a2 , a,, and c. or

equivalently A2, A,. and A0 -- see (6.20)-(6.23) and (6.28).
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B. The function q ( ,y): two iterative schemes.

In this section we use the results of Section 7. together with arguments

already developed for finite difference equations (see [15]), to determine the

function q that satisfies the conditions of A.3. We consider both the k-Line

Jacobi iterative scheme described in Section 8 and the point Gauss-Seidel

method.

The finite element spaces S, described by (6.11)-(6.13) satisfy the inverse

inequalities (5.3). Moreover, because the k-line Jacobi scheme satisfies block

property A, condition (5.4) holds. Hence to apply Theorem 5.1 we need only to

confirm (5.2) and to show that A.3 holds with an estimate of the form (5. 1). Now

(5.2) follows from observing that the nonzero coefficients in (N-N*) come from

coefficients in the problem matrix A that originate in the term

Ay/A I

of (6.28); but this term is of size 0(h). To finish'the study of the k-line Jacobi

method, we determine q in the following theorem. Of course, we will use the

matrix N O that comes from A* detned by (7.20)-(7.22). N O acts only on the vec-

tors V0 and U0. We define the norm

11N0 1h := sup ((NODO)fj) / u,°j = 1 .

Thumim 8.1. Consider the k-line block Jacobi method described by equa-

tions (6.34). There is a functioL q that satisfies A.3 and

21(,Y) = _L2 _-c (_,Y). (8.1a)

Therefore
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p =1 - AOh2+(M), (B.i1b)

where A0 is the minimal eigenvalue of (4. 1). Hence from (1. 6) and (1.7)

p(k IL1 -2-r2 + o (h 2 ) p CS(k) 5k 1h -~ 2 + o (h 2).
12 6

(8.1c)

1b = 2( -l-. I2 o (h).
6

Proof. Following the development in Section 6 we see that it suffices to con-

sider the matrix

No = - 40 1(k). 0, 40*+l(k)I (8.2)

where A.,, 1 (k) are (4kP,)x(4kP5 ) matrices of the form

01

The matrices Ak.+Iw(i) and AAM+1(i) are the (4P,)x(4P,) matrices that arise

in the case k =1. These matrices are themselves block tridiagonal matrices of

the form

A1
0~~ () =EA 0jt-j~i Aj;t.jt I Ai.j:j+ Iji I (8.3c)

where the matrices Vimj., are the 4x4 matrices given by (7.20)-(7.22c).

A direct computation now yields
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Ph Ph
a 0NO 0  E C (V.,h.A. (1) Uh.tI E I "'~A; + . 1) U. (8.4)

We rewrite (8.4) as

'PO*NOO V;(=A+ - A.
awl

V. A. 1 ( UA. I - Uk.) -, VA.-A~l) (8.5)

+ 2(.'- V-.)4+.0Ue
3.1

It follows that

VN0 U Z - A (Ai&*A.+i 4.._*l)Uk. + E(PO.rI0 ). (8.6a)

where

4 IN 0 1,(E I ujj 12)1"(S I vtj+l 1..~ 2)1/2 (8.6b)

+ h(IIVb I. + niVajl.+ -L-IIVcl)(F I tj )1,1(EI I 12)1/2.

Using the dedning equations (7.20)-(7.22c) we see that
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=& 5"4(,ai. + 1c,),,.(, +

(8.7)

Ph PS 1 312 108
+ :C ( c . at=.k.)u,.Aw. + E(90.00).

awl t=u 7 175 175

Because

i-.m+ ih4.1M :2 2%A + (ut-.1M th4kg) + (uk~j~ - uj.).

we see that

= O h a 2 (12- - ,.)1,tju. + E(PO, DO) + E,(POo DO), (8.8)

where

JEI(P°.DO) I ra +r - 1-CE I vtj 12 I-* -, u~ .j - . 'Izo z c  /)/2>-

The estimates of Theorem 7.4 now show that

h2(E( PO. DO) + E,(° V0 . o)) =0(j(u,,,)),

whence from (8.8)

To complete the proof of Theorem 8.1 we employ an argument of [15. sec-

tion 5]. Let j = 1.2, . k. Then

= ,. + 14. +a +.. ,,.(C ), (8.9)
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where for any vector So we define

Observe that

i c,=,( oi ,( o): kL,( t, . 4. _,.. _ 1,)1/u (8.10)

Therefore

SA@ j 4-1j= + Bj,+ 1 ( > , a). (.11 )

where

I , Aim +,., P. zk, o(f) + J k I ( ) + DO), 0)

Thus

=ct,bU.tj 4+ Djj=+j (U-0. V0). (8.12)

where

IA.+j(O.,P°0) ct +j Ill-s ( P 0,O°) + &y 11 c 1._11 . . A. 1.

Sum equation (8.12) for, = 1. 2, , k and divide by k. We obtain

1- o.AM. , ,A*.k,., = Ct.*,UA..hA, + H( fo,Uoc) (8.13a)

where

....................
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IH(V.UO.c)l c Icll.(lj, Iai ,. (O) + Iuj,, i,..(9o))

(B. 13b)

+ j1IIInA.,DO) Zt,.(9O) +*.A y -IIV i .I . I U-.k. I

Returning to (8.5), we have

I A XAY V°# D = 7ayk , .#i'V,.j . + (9°.00), (8.14)

where the definitions of E(90,00), E1 ( V0. Ci), and H(V 0,U0 ,c) yield

] Ic(90. DO) 1 !9 K(r)7_7(u,v-'h), (B. 15)

and the constant K(r) depends on (r + 1/ r), all the coefficients, and all their

gradient magnitudes 1V17al.. tIVblj., and IlVc lI.. The theorem now follows from

the estimates of Section 7.

We now turn to the case of the point Gauss-Seidel iterative method. First,

let us clarify our terminology. In some sense there are two such methods. In

one case we think of the geometric point (zx,yj) and associate with each such

point a 4-vector VIj. In the course of this point Gauss-Seidel scheme we must

invert a 4x4 matrix at each point. Alternatively, one may also consider the

usual Gauss-Seidel method, in which one inverts the main diagonal; hence at

each step we invert a scalar.

However, the estimates of Section 7 and the argument of Theorem 7.5 show

that for finding q these methods are the same, in the sense that they both yield

the same function q.

Unfortunately, for the point Gauss-Seidel method we cannot verify (5.4).

Hence, although we can determine q in general, presently we can assert only
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that the point Gauss-Seidel method converges for self-adjoint problems. Conver-

gence in this instance follows from application of classical principles; see for

example [20]. Even in this case we cannot prove that (5.4) holds, so we cannot

establish the upper bound on p. But in general we do have the lower bound of

Theorem 4.2. The next theorem summarizes these results.

Timoiwi 8.2. Let the unknowns be ordered lexicographically and consider

the corresponding Gauss-Seidel iterative scheme

,.. , = - ,4. ,IJ + A,.j,_.j_, UiN.j-,1)

- (A4J;,.J_, ,;),-i + A4j;t+IJ u,(.I.j-) (8.16)

(A,.j:, -j U&'Tj) + A,.utr.j+,Uj Y+, + + A.j.t+14 Ut,+. 1) + Ft,.

There is a function 9 that satisfies condition A.3 and

= 156 , + _1 c __

q(z,y) = -[-r".(,y) +--c (, )I; (8.17)
175 

(.

moreover,

p It 1 - Aohv + o (h2), (8.18)

where Ao is the minimal eigenvalue of (4.1). Of course, when L is self-adjoint the

point Gauss-Seidel method is convergent.

Proof. Theorem 4.3 implies (8.18). Using A0 rather than A we see that

'ONO ° : (-a(- tj-[. + -cj] - ___L)O7juj.

t' 17 2
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+ 54 raj+156 1LtIV U.~

+ E(156 54 1
+ '175 175 r

The proof now follows from an argument similar to -- but much simpler than -

the argument in Theorem B. 1.

------------
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9. Comments.

As we have mentioned in the introduction, the basic theorems of section 4

are closely related to earlier finite difference results. While Theorems 4.4 and

5.1 are far-reaching extensions of our earlier work that are important for higher

order and nonself-adjoint problems, even in the self-adjoint case the finite ele-

ment equations present difficulties. One of the difficulties arises from having to

deal with the many interpolation parameters, e.g.. the 36 terms

with L and p running over the set -1. 0, 11, of the finite element equations at a

point (z , j). It would be difficult to find q and verify A.3 if one had to deal with

all these terms. However, Theorem 7.4 allows one to restrict attention to the

nine function values jih tjp(.

This observation leads one to ask, are the estimates of Theorem 7.4 specific

only to these cases, or can the estimates be obtained for a general class of finite

element spaces? Looking at section 7, we see that there are two points essential

to the development of Theorem 7.4.

(1) The interpolation parameters consist of function values and derivatives at

certain vertices of the element etj.

(2) There are a fixed and finite number of finite dimensional spaces

irl , 7r2, • • i , rrR (in our case, R = 1), and for every S, it is true that to each

element ejj there corresponds a fixed irt and a smooth mapping for which

the rstrictons of the functions of S, to et.j are the images of irj under the

mapping. See Lemma 7.2. Furthermore, in iri one obtains estimates like

those of Lemma 7.1.

Therefore it is quite clear that this approach to the simplification of (*N D)



- 81 -

will apply to many finite element spaces S.. In particular. it applies to all the

nodal finite element spaces (see [18], [19]). provided that there is some regular-

ity of the elements a whose union is 0 - say, provided that the diameters of

neighboring elements vary slowly. Now we ask, given that such estimates hold

and the analysis of ('ND) is reduced to a study of (9°oN00°), which

corresponds to a related generalized finite difference equation. should one

expect to find a q for general domains and general elliptic equations? The

answer appears to be yes! For the finite difference case, this point is discussed

in [15, section 9]. Of course, if one really wants to determine q and hence the

asymptotic form of p, one must work out the details in any particular case.

Even when q is known, the eigenvalue A is not readily available. Hence one

might question the practical value of this theory. However, there are at least

four important ways in which the theory is useful.

(1) There are cases - model problems - in which one can compute the eigen-

values. For these model problems it is then possible to compare different

methods.

(2) In second order elliptic problems with nice boundary conditions, and in gen-

eral self-adjoint elliptic problems, the smallest eigenvalue is monotone

decreasing in q: that is, if q(z) ! qa(z) for all x C 0, then Ao(q 1) a A0(qp).

In these instances qualitative comparisons of different methods are possi-

ble.

(3) Consider the k-line methods. Here the basic blocks are monotone in k

This fact is reflected in (8.1), where q is inversely proportional to k, so that

A= = M l7o is directly proportional to k . Thus (8.1a) and (1.5) hold. Hence

we can compare k-line methods for different values of k even when we do

not know the exact value of r0 . It is easy to imagine a situation where one

has such cases of monotone blocks. We should then be able to compare
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me' -kds without knowing the basic Pa.

(4) Consider the relationship between the k-line Gauss-Seidel method and the

point Gauss-Seidel method(s), which is revealed by comparing Theorems 8.1

and 8.2. By computing the work per sweep, one easily sees that -- in the

best of circumstances, where p is as small as possible and equality holds in

(8.18) -- the k-line Gauss-Seidel methods are to be preferred to the point

Gauss-Seidel methods. For instance, in the simplest case where r = 1 and

a= c = 1, we see that

pGs(k) Pj 1 - -- knIhI, pas(pot) s 1 - 175 h2
3 156

We now turn to another aspect of these results. For second order problems

(mn = 1). the basic Jacobi and Gauss-Seidel methods - but not the SOR method -

have spectral radii p s 1 - A7. The exponent 2 arises from the fact that the

elliptic equation is of second order; it has nothing to do with the dimension of C)

or the order of accuracy of the discretization method, which in the case of Her-

mite cubic splines is 4. Thus for reasonably desired error tolerances, the finite

element h is large compared to the usual finite difference t, and the finite ele-

ment p is correspondingly smaller.

Block splittings based on geometrically natural blocks have a property that

is important for exploiting new computer architectures: the corresponding

problems (2.15) are easy to set up on vector and multiprocessor machines,

because M decomposes into independent submatrices. The coupling between

subregions of Q) is isolated in N. Hence overhead associated with data transmis-

sion between processors is small. Moreover, decomposition of (1.1) into (2.16) is

easily managed by hand. This is a telling factor where operating systems, com-

pilers, and other supporting software are unlikely to make available to users all
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the resources of multiprocessor machines in a simple way. Leaving aside this

practical point, we note simply that the independent subproblems of (2.16) can

be attacked simultaneously by independent processors. Hence block decompo-

sitions permit parallel computation even as they provide improved convergence

rates.
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Appendix: the eigenvalue problem.

The major purpose of this section is to prove Lemma 4.1. Let us clarify the

notation and restate the basic hypothesis.

With every function

u (Z) Ut rpt U E:) S. (a. 1a)

we associate the vector of coefficients of u

tj= (U1 , U2 ,-'' U-)Y (a.l1b)

There are three basic matrices A, Q, and N, which satisfy

tAUV= B(u,v) for all uandu E S., (a.2a)

'Q &= fuU dx for all u and v S, (a.2b)

*(hPAmN)t= -f dqud@z + e, (u,v) for all u and v E S,. (a.3b)

Here q E C1(0). q(z) - q > 0 on Q,

e,,(u,,) 1 !5 77(n)[(1 +1 uIlh)(1+11vt11) + IIu..h + 1I1v 11], (a.3c)

and

o(n) - 0 as nat (a.3d)

Note that A.3 implies (a.3c).
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We are concerned with the eigenvalue problem

AUD= hmNU, 00 (a.4a)

and its relationship to the eigenvalue problem

B (u,v) = Af qug dr for all v C Erl. (a.4b)

This latter problem is completely equivalent to the problem

Lu Aqu inQ, bju =0 onO0 (0!9 ! m-1). (a.5)

LIMM A.1 (Lemma 4.1a). Let Aj be a bounded sequence of eigenvalues of

(a.4a), so that there is a constant C > 0 for which

I C. (a.6)

Then the limit

A-:= lin- , An . (a.7)

of every convergent subsequence J,j is an eigenvalue of (a.4).

Proof. Let U(n) be the eigenvector corresponding to 1., normalized so

that

IIu(f)Io = 1. (a.Ba)

Thus

tY(n)An D(nt) =pi. Oe(n)(hNN,) _U(n). (a.8b)



Using (a.3b) and (a.3c), we get

D*(n)A D(n) = Afq u IuIx + C(uu) (a.9)

and

l- ( U )l 77 (n )(2 + 4!Iu(n) I1).

Therefore from (2.5) we have

Kol u (n)112 9 Re (FJ(n)A D(n)) g C11 q 1I.. + 77(n)(2 + 4ljul]).

Hence for n large enough

Ilu (n)112m e. - 1 !q11,. (a.10a)

Now choose a convergent subsequence i/,.' and let its limit be A.. By (a.10a)

there is a subsequence in"; of in'; and a function ' E rl so that

u(n") -r lweakly in H"(0). (a.10)

If v E and v(n) is its HI(fQ) projection onto S,, then from (a.4a) we have

V*(n)An D(n) = 1 (n)(h- N ) D(n).

Passage to the limit along n"I yields

B 9~)= Afq pVd. (a. 1)

Hence either 9 * 0. or 9o is an eigenfunction of (a.4) with corresponding eigen-



- 67 -

value A.. But the normalization (a.8a) implies that Ilollo = 1. and the lemma is

proven.

In preparation for the proof of Lemma 4.lb we develop some additional

results. Consider the inhomogeneous problem

B(u,v) f qfu dr for all v Elm (a. 12a)

For any f E LI(fQ), the solution u of (a. 12a) is in n'. Let T:L - fM denote the

solution operator

Tf = u. (a. 12b)

Similarly, let Tn:S, - S, defined by

Tnf = U (a.13a)

denote the solution operator for the discrete inhomogeneous problem

A&Y= hsm fip. (a.13b)

Observe that while (a. 13b) is stated in terms of the vectors / and F, the opera-

tor Tn maps the function f to the function u.

Our goal is a discussion of the relationship of the spectra of these opera-

tors. If A is an eigenvalue of (a.4b) then 1/A is an eigenvalue of T; similarly, if 1A

is an eigenvalue of (a.4a) then 1/s is an eigenvalue of Tn.

LMMA A.2. Let E be a bounded subset of the resolvent set of T with

1_O (a._14)
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Let x i E and let f E Sn. Consider the inhomogeneous problem

A U- -h2-N F QP. (a. 15)
z

There is an integer n o and a constant K depending on E, but not on n or f. such

that for n 2! n0 (a. 15) has a unique solution u E Sn and

iiu 1!o!9 KI[! f 1o. (a. 16)

(Note once more that we pose the problem in terms of U and P but consider the

solution as a function u E S,.)

Proof. Because (a.15) is a linear problem and S, is a finite-dimensional

space, the lemma follows once we have established (a. 16). Suppose (a.16) is

false. Then there is a subsequence in'l for which the complex number z. E C

and the functions f (n) and u(n) E S. that are related by (a. 15) satisfy

z. -a ZE. llu(n)Ilo = 1. Ilf (n)bo - 0. (a.17)

However, from (a. 15) we have

D' (v)A. D(n) - 1 *(nt) (lmN)D(n) = L (n)Q P (n).

We rewrite this to get

B (u (n).u (n)) - 1 fq I u (n) I2fr = ff I z + -- c. (u,u). (a.18)

Arguing as in the proof of Lemma A. 1, we find for n' large enough that

) 211 II.
"1u(n)III A -F. + 211f (n)Ilo.

. . . . .. . . . . . . . w 
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Therefore there is a subsequence in"I of in'l and a function S e 2 so that

Moreover, (a.17) and (a.18) imply that for every v E fm the function g satisfies

B (Se,v) =fq rpU dx.

Hence 1/ z is an eigenvalue of problem (a.4) and z. is an eigenvalue of T. But

this is impossible.

Lzmxk A.3. Fix g E Hm (0) and let g(n) E Sn be the L2 projection of g onto

S.. Let E be as above. For every z r E, let u(z;z) and u(z;z,n) be the solu-

tions of

B(u.)- -- fquudz = fg- lx for all v C,

(a.19)

AUD(z~n) - -.Lh2m N~ ~ Q 5(n).

Then

II (-:z,n)Io s Koji g 110.
(a.2o)

Ilu(-;a) - u(.:z,n)llo - 0 as -. -.

Proof. For each n we have

A - 1 Y(h" N) D= -#Qb(n).
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This equation may be rewritten as

B(u~u) - 7Lf q Iu 1dz =fg-a + -LC.(1LU,).

Because I1ullo is uniformly bounded, the usual argument shows that

u(-;,)-. u(.;z) weakly in HM (0); but then u(.;z,n) -. u(.;z) strongly in L2 (f1).

ThzoMii A.4. Let a = 1/A be an eigenvalue of T. Let 5 > 0 be chosen so small

that a is the only eigenvalue of T inside the circle about a of radius 26, and this

circle lies entirely in the right half plane Re z > 0. Then there is an n, so that

for each n n,1 there is an eigenvalue a, of T, satisfying

Ja - a,,I < 6.(a.21a) i

Consequently M. I/ a, satisfies

61A12  (a.21b)

Proof. We consider the two projection operators

E:=1 - (z - T)-1 z, E,, - 9r (z - T.='dz. (a.22)

where I is the circle r - z C: z - aI = 61. In order to prove the theorem we

need only show there is an nI such that for all n a! n

E, P 0. (a.23)

Let V be the eigenfunction associated with a. Then

rLF=qgP inO, b9=O onO( (0J!9m-1). (a.24)
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Equivalently,

aB (go'v) f q rp7dz for allu v Erf. (a.25)

Moreover,

Eq=p (a.26)

The function

u(-;z) (z -Ir (a.27a)

satistles '

Lu - qu -~= -L -q~ mrp b u =0 on 80. (a. 27b)
z z

In other words, for every v e R we have

B(u,v) - 1f~~~~zvzd 1afqg c (a. 28)

Let g (-:n) E S, be the LP-projection of q rp onto S,. Let w (;n) be the solution of

.B(w,v) =Lfq rPV dr for allu v , (a.29)

Then IP satisfies

AIY -QG (a.30)

Now set
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p(.;n) := E.W(.;n). (a.31)

Our goal is to show that there is an nj such that V(; n) 1* 0 whenever n : nj. We

have

g('.n) ( z - T.)-Iw(;n)dz. (P..32)

Let

v.z,() (z - T)-lw(.;n). (a.33)

A straightforward calculation shows that V satisdes

AP- (h2mN)P= -- AW= -Q. (a.34)

Comparing (a.28) and (a.34), we see by Lemma A.3 that

llv(';z,n)!10 !9 K .a. 35a)

for some constant K, and

I ll(';z,n) - u(';z)lo 0. (a.35b)

By (a.22), (a.26), and (a.27a),

u r (a.36a)

moreover, by (a.31) and (a.32)

(';) = r I (.;,'r) @4=.(a. 36b)

21ri
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The dominated convergence theorem and (a.31) now imply that

II (';n) - p(')I - 0 as n -.

But go 0; hence g(.;n) 0 0 for large n, and the theorem is proven.

REILAK. Following the argument in [14], one can give a complete discussion

of the relationship of the eigenvalue problem (a.-a) to the eigenvalue problem

(a.4b). All that remains for completeness is to establish that the multiplicity of

eigenvalues is preserved. However, because it is not relevant to our present

purposes we omit it.

Loma=__
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